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Abstract— This paper considers the oscillations of system 

modeled by a forced Van der Pol generalized oscillator. These 

oscillations are described by a nonlinear differential equation. 

The amplitudes of the forced harmonic, primary resonance 

super-harmonic and sub-harmonic oscillatory states are 

obtained using the harmonic balance technique and the multiple 

time scales methods. Hysteresis and jump phenomena in the 

system oscillations are obtained. Bifurcation sequences 

displayed by the model for each type of oscillatory states are 

performed numerically through the fourth-order Runge-Kutta 

scheme. 

 

Index Terms— forced Van der Pol generalized oscillator, 

harmonic balance technique, resonant states, hysteresis, 

bifurcation. 

I. INTRODUCTION 

  The theory of oscillators has shown that many dynamics 

phenomena can be modeled by oscillators in engineering, 

biochemistry, biophysics, and communications. Nonlinear 

oscillations and its applications in physics, chemistry, 

engineering, are studied with some analytical, numerical and 

experimental methods. The most interesting nonlinear 

oscillators are self-excited and the study of their dynamics is 

often difficult. Duffing, Van der Pol and Rayleigh oscillators 

have been studied by many researchers. Nowadays, much 

research has accomplished the composition of these 

oscillators. Multiresonance, chaotic behavior and its control, 

bifurcations, limit cycle stability, hysteresis and jump 

phenomena, analytic solutions, plasma oscillations, noise 

effect... are seriously analyzed. Many problems in physics, 

chemistry, biology, etc., are related to nonlinear self-excited 

oscillators [1]. Thus, Balthazar Van der Pol (1889-1959) was 

a Dutch electrical engineer who initiated modern 

experimental dynamics in the laboratory. He, first, introduced 

his (now famous) equation in order to describe triode 

oscillations in electrical circuits in 1927 [2]. The 

mathematical model for the system is a well-known second 

order ordinary differential equation with cubic nonlinearity. 

Since then thousands of papers have been published 

achieving better approximations to the solutions occurring in 

such nonlinear systems. The Van der Pol oscillator is a 

classical example of self-oscillatory system and is now 

considered as very useful mathematical model that can be 
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used in much more complicated and modified systems. But, 

why this equation is so important to mathematicians, 

physicists and engineers and is still being extensively 

studied? 

During the first half of the twentieth century, Balthazar Van 

der Pol pioneered fields of radio and telecommunications [2]. 

In an era when these areas were much less advanced than they 

are today, vacuum tubes were used to control the how of 

electricity in the circuitry of transmitters and receivers. 

Contemporary with Lorenz, Thompson, and Appleton, Van 

der Pol, in 1927, experimented with oscillations in a vacuum 

tube triode circuit and concluded that all initial conditions 

converged to the same periodic orbit of finite amplitude. 

Since this behavior is different from the behavior of solutions 

of linear equations, Van der Pol proposed a nonlinear 

differential equation 

 

                 (1) 

 

commonly referred to as the (unforced) Van der Pol equation 

[3], as a model for the behavior observed in the experiment. 

In studying the case , Van der Pol discovered the 

importance of what has become known as relaxation 

oscillations (Van der Pol[4]). Van der Pol went on to propose 

a version of (1) that includes a periodic forcing term: 

 

.                      (2) 

 

Many systems have characteristics of two types of oscillators 

and whose equation presents a combination of terms of these 

oscillators. Thus, we have the systems characterized by Van 

der Pol and Rayleigh oscillators namely the Van der Pol 

generalized oscillator or hybrid Van der pol-Rayleigh 

oscillator modeled by 

 

       (3) 

 

The Van der Pol generalized oscillator as all oscillator, 

models many physical systems. Thus, we have [5] who 

models a bipedal robot commotion with this oscillator  

known as Hybrid Van der Pol-Rayleigh oscillators". In the 

present paper, we considered the forced Van der Pol 

generalized oscillator 

 

          (4) 

 

where ,  are positives cubic nonlinearities,  is 

damping parameters while and   stand for the amplitude 

and the pulsation of the external excitation. We focuss our 

attention on the equation of motion, the resonant states, the 

chaotic behavior. The effects of differents parameters in 

general are found. 
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The paper is organized as follows: Section 2 gives an 

analytical treatment of equation of motion. Amplitude of the 

forced harmonic oscillatory states is obtained with 

harmonic-balance method. Section 3 investigate using 

multiple time-scales method, the resonant cases. The stability 

conditions are found by the perturbation method. Section 4 

evaluates bifurcation and chaotic behavior. The conclusion is 

presented in the last section. 

II. AMPLITUDE OF THE FORCED HARMONIC OSCILLATORY 

STATES 

Assuming that the fundamental component of the solution 

and the external excitation has the same period, the amplitude 

of harmonic oscillations can be tackled using the harmonic 

balance method. For this purpose, we express its solutions as 

 ,          

(5)

 
 

. (6) 

By equating the constants and the coefficients of  and  

, we have 

 
 

 

 
 

Equations (10 -11) lead to 

 

 
 

 

 
Fig. 1 Effects of the parameters    on the 

amplitude-response curves with . 

 
Fig.2 Effects of the parameter   on the amplitude-response 

curves with . 

 

The figures 1 and 2 show the effects of the parameters   

on the amplitude- response curves. Through these figures, we 

note that for small value of Rayleigh coefficient a and Van 

der Pol coefficient  the amplitude-response is linear and 

when its increase, the hystereris and jump phenomenas 

appear. The gape of jump phenomenon decreases when the 

damping parameter  increases but hysteresis and jump 

phenomena persist. 

III. RESONANT STATES 

We investigate the different resonances with the multiple 

time scales method MSM. In such a situation, an approximate 

solution is generally sought as follows: 

 

 
With   

The derivatives operators can now be rewritten as follows: 

 

 
 

Where 

 
 

A. Primary resonant  

In this state, we put that . The closeness between 

both internal and externalfrequencies is given by 

  where o(1) is the detuning 

parameter, the internal frequency is . Inserting (13) and (14) 

into (4) we obtain: 

 
 

Equating the coefficients of like powers of  after some 

algebraic manipulations, we obtain: 
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The general solution of the first equation of system (16) is 

 

 
 

where  represents the complex conjugate of the previous 

terms. is a complex function to be determined from 

solvability or secular conditions of the second equation of 

system (16). Thus, substituting the solution  in (16) leads 

us to the following secular criterion 

 
 

 
 

The secular criterion follows 

 

 

. (19) 

In polar coordinates, the solution of (19) is 

 

. 

 

Where  and 𝛉 are real quantities and stand respectively for 

the amplitude and phase of oscillations. After injecting (20) 

into (19), we obtain 

 
We separate real and imaginary terms and obtain the 

following coupled flow for the amplitude and phase:  

 
 

where the prime denotes the derivative with respect to  

and   = . For the steady-state conditions 

( ⇔ ), the following nonlinear 

algebraic equation is obtained: 

 

 

 
Where and are respectively the values of  and in 

the steady-state. Eq.(23) is the equation of primary resonance  

flow. Now, we study the stability of the process, we assume 

that each equilibrium state is submitted to a small 

perturbation as follows 

 

 

Where  and are slight variations. Inserting (24) into (22) 

and canceling nonlinear terms, we obtain 

 

 

 
 

 
 

The stability process depends on the sign of eigenvalues  of 

the equations (25) and (26). The eigenvalues are given 

through the following characteristic equation 

 

 
where 

 

 
 

Since  Q > 0, the steady-state solutions are stable if  R > 0 

and unstableotherwise. 

Figures 3 and 4 display the primary resonance curves 

obtained from (23) for different values of the 

parameters . Linear resonances curves are obtained 

shown the increasing of the resonance amplitude when the 

external forced amplitude increase. We found also the peak 

value of resonance amplitude is higher when   

than the case . 

Figure 5 displays the amplitudes response curves obtained 

from (23) for different values of the parameters . 

We obtained that for , the amplitude-response 

is a linear function of E and the slope decreases as  

increases. The hystereris phenomena appears when  

is important for small value of and disappears when  

increases. 

 
Fig. 3 Effects of the parameters  on primary 

resonance curves. 
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Fig. 4 Effects of the parameters  on the primary 

resonance curves. 

 

 
Fig. 5 Effects of the parameters  on the 

amplitude-response curves. 

A. Superharmonic and subharmonic oscillations 

 

When the amplitude of the sinusoidal external force is large, 

other type of oscillations can be displayed by the model, 

namely the superharmonic and the subharmonic oscillatory 

states. It is now assumed that  and therefore, one 

obtains the following equations at different order of .  

 

In order , 

 
 

In order  

 

 
 

The general solution of Eq.(29) is 

 

(30) 

Substituting the general solution  into Eq. (29), after some 

algebraic manipulations, we obtain 

 

 (31) 

 

where CC represents the complex conjugate of the previous 

terms. From Eq.(31), it comes that superharmonic and 

subharmonic states can be found from the quadratic and cubic 

nonlinearities. For the cases of superharmonic oscillation we 

consider   3 , while the subharmonic oscillation 

to be treated is  

 

 

B1 Superharmonic states 

 

For the first superharmonic states 3 , equating 

resonant terms at 0 from Eq.(31), we obtain: 

. 

 

 

Using (20) and after some algebraic manipulations, we 

re-write  (32) as follows 

 

 
 

With . 

 

The amplitude of oscillations of this superharmonic  states 

( ⇔ ) is governed by the 

following nonlinear algebraic equation 

 

 (34) 

With   
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Fig. 6 Effects of the parameters  on the 

superharmonic resonance curves. 

 

From  figure (6), we note that in superharmonic states, the 

resonance curve is linear and the amplitude increases as the 

external force amplitude  increases. We note also that this 

amplitude decreases as  increases. 

 

 

B2.Subharmonic states 

 

For the first subhamonic states   equating 

resonant terms at 0 from Eq.(31), we obtain: 

 

. 

 

Using (20) and after some algebraic manipulations, we 

rewrite (35) as follows 

 

 
 

with 

 
 

The amplitude of oscillations of this subharmonic states 

( ⇔ ) is governed by the 

following nonlinear algebraic equation. 

 

 (37) 

with   

 

Figure (7) shows the order 3  subharmonic resonance  curve  

with effects of parameters  and  and external excitation. 

Each of this parameter affected the stable resonance 

amplitude domain. It can be seen noticed that amplitude and 

frequency resonance increase with  amplitude of external 

excitation. 

 

 

 
Fig.7 (a): Effects of the parameters a and b on subharmonic 

resonance with ; (b) : Effect of external excitation   

on subharmonic resonance curves with . 

IV. BIFURCATION AND CHAOTIC BEHAVIOR 

The aim of this section is to find some bifurcation structures 

in the nonlinear dynamics of forced Van der Pol generalized 

oscillator described by equation (4) for resonant states since 

they are in interest for the system. For this purpose, we 

numerically solve this equation using the fourth-order Runge 

Kutta algorithm (Piskunov[8]) and plot the resulting 

bifurcation diagrams and the variation of the corresponding 

largest Lyapunov exponent as the amplitude E, the 

parameters of nonlinearity  varied. The stroboscopic 

time period used to map various transitions which appear in 

the model is  . 

The largest Lyapunov exponent which is used here as the 

instrument to measure the rate of chaos in the system is 

defined as 



 

Nonlinear dynamics of system oscillations modeled by a forced Van der Pol generalized oscillator 

                                                                                           33                                                                           www.ijeas.org 

 

  (38) 

Where  and  are respectively the variations of and . 

Initial condition that we used in the simulations of this section 

is , )=(1,1). For the set of parameters 

 

 

, the bifurcation and Lyapunov exponents diagrams for 

primary, superharmonic and subharmonic resonances are 

plotted respectively in Figs. (8), (9) and ( (10), (11)). The 

bifurcation diagrams are in upper frame and its corresponding 

Lyapunov exponents are in lower frame. From the diagrams, 

it is found that the model can switch from periodic to 

quasi-periodic, non periodic and chaotic oscillations. Since 

the model is highly sensitive to the initial conditions, it can 

leave a quasi-periodic state for a chaotic state without 

changing the physical parameters. Therefore, its basin of 

attraction has been plotted (see Figs.(16), (17)) in order to 

situate some regions of the initial conditions for which 

chaotic oscillations are observed. From these figures, we 

conclude that chaos is more abundant in the subharmonic 

resonant states than in the superharmonic and primary 

resonances. This confirms what has been obtained through 

their bifurcation diagrams and Lyapunov exponent. 

We noticed that for the small value of ε, the system is not 

chaotic. 

In order to illustrate such situations, we have represented the 

various phase portraits using the parameters of the bifurcation 

diagram for which periodic, quasi periodic and non periodic 

oscillations motions are observed in Figs. (12), (13), (14) and 

chaotic motions are observed in Fig.(15) for the two values of 

the parameters  above. From the phases diagram we 

observed appearance of the closed curve and the torus that 

confirm the two precedent types of motions predicted and the 

linear types of resonances seen in the third section. 

 

 
Fig. 8 Bifurcation diagram (upper frame) and Lyapunov 

exponent (lower frame) for   in primary 

resonance case. 

 
Fig. 9 Bifurcation diagram (upper frame) and Lyapunov 

exponent (lower frame) for  in 

superharmonic case. 

 

 
Fig. 10 Bifurcation diagram (upper frame) and Lyapunov 

exponent (lower frame) for subharmonic 

case. 

 
Fig. 11 Bifurcation diagram (upper frame) and Lyapunov 

exponent (lower frame) for, , 

Subharmonic states case. 
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Fig. 12 Phases diagram for parameters values in figure, 

, primary resonance case. 

 
Fig. 13 Phases diagram for parameters values in  

figure, Superharmonic states case. 

 
Fig. 14 Phases diagram for parameters values in figure 

,  , Subharmonic states case. 

 
Fig. 15 Phases diagram for parameters values in  figure, 

, . 

 
Fig. 16 Chaoticity basin for parameters values in figure 9 

with . 

 
Fig. 17 Chaoticity basin for parameters values in  figure 11 

with . 

IV. CONCLUSION 

In this work, we have studied the nonlinear dynamics of 

system oscillations modeled by forced Van der Pol 

generalizedoscillator. In the harmonic case, the balance 

method has enabled us to derive the amplitude of harmonic 

oscillations, and the effects of the different parameters on the 

behaviors of model have been analyzed. For the resonant 

states case, the response amplitude, stability (for primary 

resonance case) have been derived by using multiple 

time-scales method and perturbation method. It appears the 

first-orders superharmonic and subharmonic resonances. 

The effects of different parameters on these resonances are 

been found and we noticed that the Van der Pol, Rayleigh 

parameters and the external force amplitude have several 

action on the amplitude reponse and the resonances curves. 

The influences of these parameters on the resonant, hysteresis 

and jump phenomena have been highlighted. Our analytical 

results have been confirmed by numerical simulation. 

Various bifurcation structures showing different types of 

transitions from quasi-periodic motions to periodic and the 

beginning of chaotic motions have been drawn and the 

influences of different parameters on these motions have been 

study. It is noticed that behaviors of system have been 

controlled by the parameters   and but also the 

damping parameter є. We conclude that chaos is more 

abundant in the subharmonic resonant states than in the  

superharmonic and primary resonances. This confirms what 

has been obtained through their bifurcation diagrams and 

Lyapunov exponent. The results show a way to predict 

admissible values of the signal amplitude for a corresponding 
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set of parameters. This could be helpful for the 

experimentalists who are interested in trying to stabilize such 

a system with external forcing. For practical interests, it is 

useful to develop tools and to find ways to control or suppress 

such undesirable regions. This will be also useful to control 

high amplitude of oscillations obtained and which are 

generally source of instability in physics system. 
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